Jump to content

Placentalia

From Wikipedia, the free encyclopedia
(Redirected from Placental)

Placentals
Temporal range: Paleocene-Holocene 66.0–0 Ma Possible Late Cretaceous record
Common vampire batEastern gray squirrelPlains zebraAardvarkHumpback whaleBlack and rufous elephant shrewHumanGround pangolinSunda flying lemurWest Indian manateeEuropean hedgehogNine-banded armadilloSouthern elephant sealAsian elephantReindeerGiant anteaterGiant pandaAmerican pika
Placentals from different orders.
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Clade: Eutheria
Infraclass: Placentalia
Owen, 1837
Subgroups

For extinct groups, see text

Placental mammals (infraclass Placentalia /plæsənˈtliə/) are one of the three extant subdivisions of the class Mammalia, the other two being Monotremata and Marsupialia. Placental mammals contains the vast majority of extant mammals, which are partly distinguished from monotremes and marsupials in that the fetus is carried in the uterus of its mother to a relatively late stage of development. The name is something of a misnomer, considering that marsupials also nourish their fetuses via a placenta,[1] though for a relatively briefer period, giving birth to less-developed young, which are then nurtured for a period inside the mother's pouch. Placental mammals represents the only living group within Eutheria, which contains all mammals that are more closely related to placental mammals than they are to marsupials.

Anatomical features

[edit]

Placentals are anatomically distinguished from other mammals by:

  • a chorioallantoic placenta that provides nutrients and oxygen to the developing embryo via an umbilical cord accompanied by a prolonged gestation period compared to marsupials.[2]
  • a sufficiently wide opening at the bottom of the pelvis to allow the birth of a large baby relative to the size of the mother.[3]
  • the absence of epipubic bones extending forward from the pelvis, which are found in all other mammals.[4] (Their function in non-placental mammals is to stiffen the body during locomotion,[4] but in placental mammals they would inhibit the expansion of the abdomen during pregnancy.)[5]
  • the rearmost bones of the foot fit into a socket formed by the ends of the tibia and fibula, forming a complete mortise and tenon upper ankle joint.[6]
  • the presence of a malleolus at the bottom of the fibula.[6]
  • instead of a cloaca[a] like monotremes, marsupials and most other vertebrates, the conduits of the urogenital system exit through the vulva or penis and the rectum opens as the anus.[7] The main internal organs and conduits of the placental urogenital system consist of one or two uteri, one vagina, and a urethra for females, and a urethra for reproduction and urination in males.[8]
  • the presence of a corpus callosum in between the cerebral hemispheres.[9]
  • the presence of a navel on the abdomen.[10]

Subdivisions

[edit]

Analysis of molecular data led to rapid changes in assessments of the phylogeny of placental orders at the close of the 20th century. A novel phylogeny and classification of placental orders appeared with Waddell, Hasegawa and Okada in 1999.[11] "Jumping genes"-type retroposon presence/absence patterns have provided corroboration of phylogenetic relationships inferred from molecular sequences.[12] It is now widely accepted that there are three major subdivisions or lineages of placentals: Boreoeutheria, Xenarthra, and Afrotheria. All of these diverged from common ancestors.

2022 studies of Bertrand, O. C. and Sarah L. Shelley have identified palaeoryctids and taeniodonts as basal placental mammal clades.[13][14]

The 19 living orders of Placentalia in the four groups are:[15][16]

The exact relationships among these three lineages is currently a subject of debate, and four different hypotheses have been proposed with respect to which group is basal or diverged first from other placentals. These hypotheses are Atlantogenata (basal Boreoeutheria), Epitheria (basal Xenarthra), Exafroplacentalia (basal Afrotheria) and a hypothesis supporting a near simultaneous divergence.[17] Estimates for the divergence times among these three placental groups mostly range from 105 to 120 million years ago (MYA), depending on the type of DNA, whether it is translated, and the phylogenetic method (e.g. nuclear or mitochondrial),[18][19] and varying interpretations of paleogeographic data.[17] In addition, a strict molecular clock does not hold, so it is necessary to assume models of how evolutionary rates change along lineages. These assumptions alone can make substantial differences to the relative ages of different mammal groups estimated with genomic data.[20]

Placentalia

Cladogram and classification based on Amrine-Madsen, H. et al. (2003)[21] and Asher, R. J. et al. (2009)[22] Compare with Waddell, Hasegawa and Okada (1999)[11] and Waddell et al. (2001).[18]

Genomics

[edit]

As of 2020, the genome has been sequenced for at least one species in each extant placental order and in 83% of families (105 of 127 extant placental families).[23]

See list of sequenced animal genomes.

Evolutionary history

[edit]

True placental mammals (the crown group including all modern placental mammals) arose from stem-group members of the clade Eutheria, which had existed since at least the Middle Jurassic period, about 170 mya. These early eutherians were small, nocturnal insect eaters, with adaptations for life in trees.[6]

True placental mammals may have originated in the Late Cretaceous around 90 mya, but the earliest undisputed fossils are from the early Paleocene, 66 mya, following the Cretaceous–Paleogene extinction event. The species Protungulatum donnae is sometimes placed as a stem-ungulate [24] known 1 meter above the Cretaceous-Paleogene boundary in the geological stratum that marks the Cretaceous–Paleogene extinction event [25] and Purgatorius, sometimes considered a stem-primate, appears no more than 300,000 years after the K-Pg boundary;[26] both species, however, are sometimes placed outside the crown placental group, but many newer studies place them back in Eutheria.[further explanation needed][27] The rapid appearance of placental mammals after the mass extinction at the end of the Cretaceous suggests that the group had already originated and undergone an initial diversification in the Late Cretaceous, as suggested by molecular clocks.[28] The lineages leading to Xenarthra and Afrotheria probably originated around 90 mya, and Boreoeutheria underwent an initial diversification around 70-80 mya,[28] producing the lineages that eventually would lead to modern primates, rodents, insectivores, artiodactyls, and carnivorans.

However, modern members of the placental orders originated in the Paleogene around 66 to 23 mya, following the Cretaceous–Paleogene extinction event. The evolution of crown orders such modern primates, rodents, and carnivores appears to be part of an adaptive radiation[29] that took place as mammals quickly evolved to take advantage of ecological niches that were left open when most dinosaurs and other animals disappeared following the Chicxulub asteroid impact. As they occupied new niches, mammals rapidly increased in body size, and began to take over the large herbivore and large carnivore niches that had been left open by the decimation of the dinosaurs (and perhaps more relevantly competing synapsids[30]). Mammals also exploited niches that the non-avian dinosaurs had never touched: for example, bats evolved flight and echolocation, allowing them to be highly effective nocturnal, aerial insectivores; and whales first occupied freshwater lakes and rivers and then moved into the oceans. Primates, meanwhile, acquired specialized grasping hands and feet which allowed them to grasp branches, and large eyes with keener vision which allowed them to forage in the dark.

The evolution of land placental mammals followed different pathways on different continents since they cannot easily cross large bodies of water. An exception is smaller placental mammals such as rodents and primates, who left Laurasia and colonized Africa and then South America via rafting.

In Africa, the Afrotheria underwent a major adaptive radiation, which led to elephants, elephant shrews, tenrecs, golden moles, aardvarks, and manatees. In South America, a similar event occurred, with radiation of the Xenarthra, which led to modern sloths, anteaters, and armadillos, as well as the extinct ground sloths and glyptodonts. Expansion in Laurasia was dominated by Boreoeutheria, which includes primates and rodents, insectivores, carnivores, perissodactyls and artiodactyls. These groups expanded beyond a single continent when land bridges formed linking Africa to Eurasia and South America to North America.

A study on eutherian diversity suggests that placental diversity was constrained during the Paleocene, while multituberculate mammals diversified; afterwards, multituberculates decline and placentals explode in diversity.[30]

Notes

[edit]
  1. ^ Exceptional adult placentals that retain a cloaca are afrosoricids, beavers, pikas, and some shrews.

References

[edit]
  1. ^ Renfree, M. B. (March 2010). "Review: Marsupials: placental mammals with a difference". Placenta. 31 Supplement: S21–6. doi:10.1016/j.placenta.2009.12.023. PMID 20079531.
  2. ^ Zachos, Frank; Asher, Robert (2018-10-22). Mammalian Evolution, Diversity and Systematics. Walter de Gruyter GmbH & Co KG. ISBN 978-3-11-034155-3.
  3. ^ Weil, A. (April 2002). "Mammalian evolution: Upwards and onwards". Nature. 416 (6883): 798–799. Bibcode:2002Natur.416..798W. doi:10.1038/416798a. PMID 11976661. S2CID 4332049.
  4. ^ a b Reilly, S. M. & White, T. D. (January 2003). "Hypaxial Motor Patterns and the Function of Epipubic Bones in Primitive Mammals". Science. 299 (5605): 400–402. Bibcode:2003Sci...299..400R. doi:10.1126/science.1074905. PMID 12532019. S2CID 41470665.
  5. ^ Novacek, M. J., Rougier, G. W, Wible, J. R., McKenna, M. C, Dashzeveg, D. and Horovitz, I. (October 1997). "Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia". Nature. 389 (6650): 483–486. Bibcode:1997Natur.389..483N. doi:10.1038/39020. PMID 9333234. S2CID 205026882.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ a b c Ji, Q., Luo, Z-X., Yuan, C-X., Wible, J. R., Zhang, J-P. and Georgi, J. A. (April 2002). "The earliest known eutherian mammal". Nature. 416 (6883): 816–822. Bibcode:2002Natur.416..816J. doi:10.1038/416816a. PMID 11976675. S2CID 4330626.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Marvalee H. Wake (15 September 1992). Hyman's Comparative Vertebrate Anatomy. University of Chicago Press. p. 583. ISBN 978-0-226-87013-7. Retrieved 6 May 2013.
  8. ^ Lewitus, Eric, and Christophe Soligo. "Life-history correlates of placental structure in eutherian evolution Archived 2017-09-06 at the Wayback Machine." Evolutionary Biology 38.3 (2011): 287-305.
  9. ^ Velut, S; Destrieux, C; Kakou, M (May 1998). "[Morphologic anatomy of the corpus callosum]". Neuro-Chirurgie. 44 (1 Suppl): 17–30. PMID 9757322.
  10. ^ Mohamed Fahmy (2018). Umbilicus and Umbilical Cord. Springer International Publishing. ISBN 978-3-31962-383-2. Retrieved 7 December 2024.
  11. ^ a b Waddell, P. J.; Okada, N.; Hasegawa, M. (1999). "Towards Resolving the Interordinal Relationships of Placental Mammals". Systematic Biology. 48 (1): 1–5. doi:10.1093/sysbio/48.1.1. PMID 12078634.
  12. ^ Kriegs, Jan Ole; Churakov, Gennady; Kiefmann, Martin; Jordan, Ursula; Brosius, Jürgen; Schmitz, Jürgen (2006). "Retroposed Elements as Archives for the Evolutionary History of Placental Mammals". PLOS Biology. 4 (4): e91. doi:10.1371/journal.pbio.0040091. PMC 1395351. PMID 16515367.
  13. ^ Bertrand, O. C.; Shelley, S. L.; Williamson, T. E.; Wible, J. R.; Chester, S. G. B.; Flynn, J. J.; Holbrook, L. T.; Lyson, T. R.; Meng, J.; Miller, I. M.; Püschel, H. P.; Smith, T.; Spaulding, M.; Tseng, Z. J.; Brusatte, S. L. (2022). "Brawn before brains in placental mammals after the end-Cretaceous extinction". Science. 376 (6588): 80–85. Bibcode:2022Sci...376...80B. doi:10.1126/science.abl5584. hdl:20.500.11820/d7fb8c6e-886e-4c1d-9977-0cd6406fda20. PMID 35357913.
  14. ^ Sarah L. Shelley (2022.) "The phylogeny of Paleocene mammals and the evolution of Placentalia", in "The Society of Vertebrate Paleontology 82nd annual meeting"
  15. ^ Archibald JD, Averianov AO, Ekdale EG (November 2001). "Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals". Nature. 414 (6859): 62–5. Bibcode:2001Natur.414...62A. doi:10.1038/35102048. PMID 11689942.
  16. ^ "Mammals". vertlife.org. Retrieved 2024-11-12.
  17. ^ a b Nishihara, H.; Maruyama, S.; Okada, N. (2009). "Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals". Proceedings of the National Academy of Sciences. 106 (13): 5235–5240. Bibcode:2009PNAS..106.5235N. doi:10.1073/pnas.0809297106. PMC 2655268. PMID 19286970.
  18. ^ a b Waddell, P. J.; Kishino, H.; Ota, R. (2001). "A phylogenetic foundation for comparative mammalian genomics". Genome Informatics Series. 12: 141–154.
  19. ^ Springer, Mark S.; Murphy, William J.; Eizirik, Eduardo; O'Brien, Stephen J. (2003). "Placental mammal diversification and the Cretaceous–Tertiary boundary". Proceedings of the National Academy of Sciences. 100 (3): 1056–1061. Bibcode:2003PNAS..100.1056S. doi:10.1073/pnas.0334222100. PMC 298725. PMID 12552136.
  20. ^ Kitazoe, Y.; Kishino, H.; Waddell, P. J.; Nakajima, T.; Okabayashi, T.; Watabe, T.; Okuhara, Y. (2007). "Robust time estimation reconciles views of the antiquity of placental mammals". PLOS ONE. 2 (e384): 1–11. Bibcode:2007PLoSO...2..384K. doi:10.1371/journal.pone.0000384. PMID 17440620.
  21. ^ Amrine-Madsen, H.; Koepfli, K. P.; Wayne, R. K.; Springer, M. S. (2003). "A new phylogenetic marker, apoliprotein B, provides compelling evidence for eutherian relationships". Molecular Phylogenetics and Evolution. 28 (2): 225–240. Bibcode:2003MolPE..28..225A. doi:10.1016/s1055-7903(03)00118-0. PMID 12878460.
  22. ^ Asher, R. J.; Bennett, N.; Lehmann, T. (2009). "The new framework for understanding placental mammal evolution". BioEssays. 31 (8): 853–864. doi:10.1002/bies.200900053. PMID 19582725.
  23. ^ Zoonomia Consortium (2020) A comparative genomics multitool for scientific discovery and conservation. Nature 587, 240–245
  24. ^ O'Leary, Maureen A.; Bloch, Jonathan I.; Flynn, John J.; Gaudin, Timothy J.; Giallombardo, Andres; Giannini, Norberto P.; Goldberg, Suzann L.; Kraatz, Brian P.; Luo, Zhe-Xi; Meng, Jin; Ni, Michael J.; Novacek, Fernando A.; Perini, Zachary S.; Randall, Guillermo; Rougier, Eric J.; Sargis, Mary T.; Silcox, Nancy b.; Simmons, Micelle; Spaulding, Paul M.; Velazco, Marcelo; Weksler, John r.; Wible, Andrea L.; Cirranello, A. L. (8 February 2013). "The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals". Science. 339 (6120): 662–667. Bibcode:2013Sci...339..662O. doi:10.1126/science.1229237. hdl:11336/7302. PMID 23393258. S2CID 206544776.
  25. ^ Archibald, J.D., 1982. A study of Mammalia and geology across the Cretaceous-Tertiary boundary in Garfield County, Montana. University of California Publications in Geological Sciences 122, 286.
  26. ^ Fox, R. C.; Scott, C. S. (2011). "A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada". Journal of Paleontology. 85 (3): 537–548. Bibcode:2011JPal...85..537F. doi:10.1666/10-059.1. S2CID 131519722.
  27. ^ Halliday, Thomas J. D. (2015). "Resolving the relationships of Paleocene placental mammals". Biological Reviews. 92 (1): 521–550. doi:10.1111/brv.12242. PMC 6849585. PMID 28075073.
  28. ^ a b dos Reis, M.; Inoue, J.; Hasegawa, M.; Asher, R. J.; Donoghue, P. C. J.; Yang, Z. (2012). "Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny". Proceedings of the Royal Society B. 279 (1742): 3491–3500. doi:10.1098/rspb.2012.0683. PMC 3396900. PMID 22628470.
  29. ^ Alroy, J (1999). "The fossil record of North American Mammals: evidence for a Palaeocene evolutionary radiation". Systematic Biology. 48 (1): 107–118. doi:10.1080/106351599260472. PMID 12078635.
  30. ^ a b Brocklehurst, Neil; Panciroli, Elsa; Benevento, Gemma Louise; Benson, Roger B.J. (July 2021). "Mammaliaform extinctions as a driver of the morphological radiation of Cenozoic mammals". Current Biology. 31 (13): 2955–2963.e4. Bibcode:2021CBio...31E2955B. doi:10.1016/j.cub.2021.04.044. PMID 34004143. S2CID 234782605.
[edit]